Learning fuzzy decision trees

نویسندگان

  • Bruno Apolloni
  • Giacomo Zamponi
  • Anna Maria Zanaboni
چکیده

We present a recurrent neural network which learns to suggest the next move during the descent along the branches of a decision tree. More precisely, given a decision instance represented by a node in the decision tree, the network provides the degree of membership of each possible move to the fuzzy set z.Lt;good movez.Gt;. These fuzzy values constitute the core of the probability of selecting the move out of the set of the children of the current node.This results in a natural way for driving the sharp discrete-state process running along the decision tree by means of incremental methods on the continuous-valued parameters of the neural network. The bulk of the learning problem consists in stating useful links between the local decisions about the next move and the global decisions about the suitability of the final solution. The peculiarity of the learning task is that the network has to deal explicitly with the twofold charge of lighting up the best solution and generating the move sequence that leads to that solution. We tested various options for the learning procedure on the problem of disambiguating natural language sentences.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy min-max neural network based decision trees

This paper presents a new decision tree learning algorithm, fuzzy min-max decision tree (FMMDT) based on fuzzy min-max neural networks. In contrast with traditional decision trees in which a single attribute is selected as the splitting test, the internal nodes of the proposed algorithm contain a fuzzy min-max neural network. In the proposed learning algorithm, the exibility inherent in the fuz...

متن کامل

FuzzyDT- A Fuzzy Decision Tree Algorithm Based on C4.5

Decision trees have been successfully applied to many areas for tasks such as classi cation, regression, and feature subset selection. Decision trees are popular models in machine learning due to the fact that they produce graphical models, as well as text rules, that end users can easily understand. Moreover, their induction process is usually fast, requiring low computational resources. Fuzzy...

متن کامل

Fuzzy-Rough Feature Significance for Fuzzy Decision Trees

Crisp decision trees are one of the most popular classification algorithms in current use within data mining and machine learning. However, although they possess many desirable features, they lack the ability to model vagueness. As a result of this, the induction of fuzzy decision trees (FDTs) has become an area of much interest. One important aspect of tree induction is the choice of feature a...

متن کامل

Fuzzy Decision Tree

Decision trees have been widely used in machine learning. However, due to some reasons, data collecting in real world contains a fuzzy and uncertain form. The decision tree should be able to handle such fuzzy data. This paper presents a method to construct fuzzy decision tree. It proposes a fuzzy decision tree induction method in iris flower data set, obtaining the entropy from the distance bet...

متن کامل

A New Algorithm for Optimization of Fuzzy Decision Tree in Data Mining

Decision-tree algorithms provide one of the most popular methodologies for symbolic knowledge acquisition. The resulting knowledge, a symbolic decision tree along with a simple inference mechanism, has been praised for comprehensibility. The most comprehensible decision trees have been designed for perfect symbolic data. Classical crisp decision trees (DT) are widely applied to classification t...

متن کامل

Fuzzy decision trees: issues and methods

Decision trees are one of the most popular choices for learning and reasoning from feature-based examples. They have undergone a number of alterations to deal with language and measurement uncertainties. We present another modification, aimed at combining symbolic decision trees with approximate reasoning offered by fuzzy representation. The intent is to exploit complementary advantages of both...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neural networks : the official journal of the International Neural Network Society

دوره 11 5  شماره 

صفحات  -

تاریخ انتشار 1998